If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-45x+21=0
a = 24; b = -45; c = +21;
Δ = b2-4ac
Δ = -452-4·24·21
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-3}{2*24}=\frac{42}{48} =7/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+3}{2*24}=\frac{48}{48} =1 $
| 7.4z−18.85=9.8z+16.43 | | 3(5+s)+4=5s | | 7.4z-18.85=9.8z+16.43 | | b-2.8=0.5b+1.2 | | x+5/x=8/12 | | f/27=-26 | | 4n=21n= | | 11n=-142 | | 14-13w=-16-16w | | -17h=-9-16h | | 36j-10=8j+4 | | 2*7^+8y=121.5 | | 36K-10=8k+4 | | -10.8b=6.8b-12.32 | | u/29=30 | | (16x-1)+79=180 | | 5{x-6}=3x | | -4.46-10.2p=-6.6p-2.6p+2.54 | | g/6=6 | | 7(k-7)=2(11=k) | | 13q=897 | | -5+s=-7+2s | | (9-2x)^4=0 | | 9^-8y=121.5 | | -13-2u=-3u | | 20+12k=-20-20+9k | | 11=d-21 | | -9g-10=-10g | | -16x^2+320x+32=x | | -4z+2=-7+5z | | -8s-5=-7s | | 5+6×(x-2)=3x+20 |